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Mathematics Eduéaiioaneports
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Mathematics Education Reports g{s being developed to disseminste

information concerning mathematics education documents analyzed at

the ERIC Information Analys?s‘Center for Science, Mathematics, and

qlEnvironmental Education. TheSe reports fall into'three broad
cetegories., . Research revi;ws sumarize and analyze recent research °
in spécifié areas of mathematics educatﬁon. Resource guides identify
and analyze materials and references for use by mathematics teachers
at all levels, Special bibliog;gphies a5nounce %pe availability of
doc&ménts and review the literature in selected interest areas of
mathemétics education, Reports in each of these categories may also
be targeted for specific Sub-pgpdlations of .the mathematics education
comunity,’ érioritieé for the development of .future Mathematics

. Equcation Reports are established by the advisory board of the Center,
in cooperation with the National Council of Teachers of Mathematics,
the Special Interest Group for Research in Mathematics Education,
the Conferenc% Board of the Mathematical Sciences, and other pro-

fessional groups in mathematics education., ‘Individual comments

on part Reports and suggestions for future Reports are always

welcomed by the editor,
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. " In 1975, as in previous years, the Special Interest Group

. , Y
for Research in Mathematics Education sponsored a presentatién at ofs

the annual meeting of the American Educational Research Association.
T%is publication is based on thespresentation made by Professor
Simon on 31 March'}975 at the AERA meeting in' Washington, D.C.
Professor Simon describes how c;ntemporary information .

processing approaches to thinking and learning are beginning to
illuminate the rote-meaningful distinction in the way in which

v students learn. He presents some concrete examples of résearch that
illustrate important characteristics and significant findings of the
informatiop pr;cessing approach. He also provides some background
information on human information processing and or® computer simulation‘

4

that should help readers to undexstand the scope of the field better. R

)

ERIC/SMEAC is pleased.to make this publication available. .

- .

Marilyn N. Suydam )
Editor ,
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s, ’ This publication was prepared pursuant to a contract with the )

National Institute of Education, U. 5. Department of Health Education
‘ and Welfare. Contractors undertaking such projects under G;vernment )
) sponsorship are encouraged to express freely their judgment in i
professional and technical matters. Points of view or opinions .do

not, therefore, necessarily represent official National Institute of
+ Education position or policy.
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_LEARNING WITH UNDERSTANDING

Herbert A. Simon
Carnegie-Mellon University

;!

v Everyohe who teaches becomes aware through his classroom experience
that there are .important differences between the student who has learned
by rote and the student who has learned with understanding, or "meaning-
fully." There are differences in what these two kinds of students .have
learned, and there are consequent differemces in what they can do with
what gthey have learned.. The teacher becomes alert to«elgnals that indi-
cate which kind of learnlng a student is achieving, 'and tries to develop
technlques for transformlng rote learhlng into meaningful learning.

While the distinction between rote and meaningful learning is part
of the common-sense equipment of every teacher, it is an intpitive rather
than a formal notion that has never been provided with a solid foundation
in the form of a satisfactory psychological theory. Although Gestalt
psychology paid considerable attention to the d1st1nctlon, it succeeded
only in.labeling it and descrlblng some of its manifesta®ions, without.
prov1d1ng a set of mechanisms and processes that could account for it in
‘operational terms. Psychology in the S-R tradition, on the other hand,
tended to ignore the distinction (sometimes even denying the usefulness
of asking "what is learned?"), and hardly undertook to construct an
explanation for a phenomenon it did not recognize.

From many other fields of human endeavor (medicine and engineering,
for example), we have learned that practical knowledge without theory can
carry us only a certain distance, even in practical affairs. Theories
that explain underlying mechanisms give us powerful new tools and methods
for use in our work. But then, I need hardly labor that.point in a meet-
ing of the American Educational Research Association. Belief in the
relevance of theory to improved practice is one of the foundation stones

.on which this'organization stands. . o

In my remarks today, I should like to describe how contemporary
information-processing approaches  to thinking and learning are beginning
to illuminate the rote-meaningful distinction, enabling us to determine
with some precision what the student has stored in memory as a result of
a learning ekperience, what the consequences are of storing one thing
rather than another, and how particular kinds of learning can be encour-
aged -and others discouraged. Our ne¥ knowledge and precision in these
matters is closely linkefl with our growing ability to write computer -
programs that describe and,simulate in detail the processes that humans
usg to carry out complex cogrfitive tasks, and that describe how the
knowledge and information used in these .tasks is stored in human memory.

My discussion will center around some half dozen concrete examples
of research, some carried out in our own laboratory and some done else-
where, that illustrate important characteristics and significant findings




of the information processing approach to these questions. These examples
will show how a combination of standard experimental approaches, analysis
of thinking-aloud protocold of ongoing thought processes, and computer .
simulation are bgginning to give ps a clear and detailed picture of what
goes on in probl solving, and the variety of methods--rote and -
.meaningful--that can be employed in a single, relatively simple, task.

Some of the examples that will be discussed involye the kinds of
puzzles and trick problems that psychologists like to‘pée as laboratory =
tasks, while others involve important school subjects. In particular,

I have tried to select examples that would cast light on one of the
central skills we try to teach in the mathematics-science parts of our
curricula<-the use of mathematics to model physical and other real-world

phenomena, and through modeling, to understand them and predict their
behavior.

The belief that mathematics sHould be learned with understanding
rather than by rdte was one of the main motivations leading to the
development a 'ntroduction of the 'rew math" programs into primary and »
secondary schools. In the design of these new programs, it was freguently
assumed that "understanding" mathematics was closely associated with

Lproceeding rigorously and defining underlying concepts carefully. While
considerable attention was devoted to the proper treatment of mathematical
syntax, semantic considerations tended to enter mainly at the very basic

| levels (e.g., the definition of cardinal number). It is possible/%hat

| the conception ,of "understanding" that has entered into the construction

; , of these programs captures only part of the meaning of that term. In

E particular, it may be one thing for a professional mathematician, con-

E cgrﬁed mainly with the discovery and demonstratién of new mathematical

; truths, to "understand" mathematics, and another thing for a scientist

~ or applied mathematician, concerned mainly with using mathematical tools

; to discover and derive generalizations about empirical phenomena, to

[ "undersfand” it. .Some of the research I ;%all report at least suggests,

E without‘demonstrating conclusively, that such a dualistic conceptien of -

| mathematical understanding has a genuine psychological basis.

| .

i Before beginning an analysis of specific examples, it will be useful

| . to say a little more about what is involved in an information processing

| -approach to these matters, and how a computer can be used to simulate ’
[ cognitive eprocesses. The first sections of this paper constitute an
; introduction to these topics.
|
F
D
|

’

Human Information Processing : \

M.

When human beings are observed working on well-structured problems
that are difficult for them, their behaviors reveal certain broad charac-
teristics of the underlying information processing system that supports’
| theg problem~solving pr8cesses; but at‘the same time, the behaviors con- _'
ﬁ ceal salmost all the detail of that system. As a result, we can describe
| the system, for our purposes, in rather broad terms.
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The basic chafacteristics of the human information processing system
(IPS) that shape 1ts problem 551v1ng efforts are these: -The system
operates mostly serlally, one proces$ at a time, not in parallel fashion.
(A partial exception must be made for recognltxgn processes, which are
probably carried out in parallel.) Its elementary processes take tens

. or hundreds of millliseconds. The inputs and outputs of these processes

are held in a small short-term memory with a cabacity of only a few
symbols. The system has access to & practically infinite long-term
memory, but the time required to store a symbol in that memory is of the
order of seconds or tens of seconds. Access to long-term memory is
obtained by recognizing stimuli, ,the recognizer serving as a soxt of
"index," or by associating from bne item in memory to another.

The evidence that the human system has the ﬂioperties Just listed
comes partly from regeerch on complex cognitive thsks. No problem-
solving behavior has been observed.in the laboratory that seems inter-
pretable in terms of simultaneous rapid search of§d13301nt parts of the
solver's problem space. On the contrary;, the solder always appears to
search sequentially, adding small successive accreltions to his store of
information about-the problem and its solution.

4

Additional evidence for the basic properties of the IPS cdmes from

" the simpler standard laboratory tasks. The evidence for-.the 5 or 10
,secdnds required to store a sypbol in long-term memory comes mainly from

rote memory experiments; evidence for the seven-symbal capacity of short-
term memory, from immediate recall expériments; evidence for the 200
milligeconds needeq to transfer symbols into and out of short-term
memory, from experiments requiring searches down lists or simple arith-
metic computations, (Some of this evidence is reviewed in Newell and
Simon, 1972, ) .

The detall of the human IFS is elusive because the system is adap-
tive. For a system to be adaptlve means that it is capable of grappling
with whatever task enviromment confronts it. Hence, to the extent that
a system is adaptive, its behavior is determined by the demands of ‘that
task environment rather. than by its own internal characteristics. Only
when the environment stresses its capacities along some dimension--
presses its performance to the limit--do we discover what those capac-
ities and limits are, and are we able to measure some of thelr parameters

(Simon, 1969, Ch. 1 and 2). - ‘ .

-

Because of the adaptivity of the human IPS, any explanation of ‘its
behavior in the face of a particular task must take injo account the

1l -

strategy or "program" it employs for that task. The exemples to be dis- °

.cussed in this paper will have & great deal to say about the nature of

these strategies and thelir relation to learnlng and understandlng

“ Y

If we wish a slightly-more formal description of the human IPFS, it
carr be constructed along these lines: .
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] 4. An information Eggcess-is a process that takes symbol

'3 P .

1. There is a set of elements, called symbols, which are
- capable of denoting, or pointing to, objects. $

- 2. There are symbol structures, consisting of organizations
of symbols b%bnected by a set of relations. g

3. A memory is a component of an I capable of storlhg and
retaining symbol structures.

structures as 'its inputs or outputs.
- -
5. A processor is a component of an IPS consisting of:
(a) a set of elementary information processes; (b) a
short-term memory that holds the input and output struc-
) tures of tne information processes; and (¢) an interpreter
that selects the oyder in which the information processes

¥

wiIl be executed. :
- N N
6. The symbol structures that determine for the interpreter
~ . the order in which it will execute processes are its
. program Rk ) ,

Everything we know. about the human 1nformatlon processing system
indicates that it meets these specifications in addition to the more
specific ones mentioned earlier..

In discussing human problem-solving behavior, it is often convenient .
to distinguish the "objective" problem situation as the experimenter would
describe it from the situation as the problem solver represents it to
himself in attacking the problem. We will cali~the former, 6bjective,
description 9f the problem situation the task environment, and the latter,
subjective, representation the problem space. For many purposes, problem
solving can Ye viewed as a search through the problem space, which_may be
thought of as a tree-liké network or'maze. If the problem space is in-
appropriate to the objective task enviromment, it may be difficult or
impossible to solve the problem. On the other hand, an especially hepﬁ?“’
choice of problem space may greatly facilitate finding a solution.

These possibilities will be illustrated.by the examples. )

Cemputer Simulation

The modern electronic digital computer has proved to be a powerful
aid to research on human higher mental processes, and our knowledge about
these processes has advanced greatly’'since this new tool became available
about twenty years ago. The computer has made its contribution in at
least three wayd’ Flrst, as our description of the human IPS suggests,
it has served as a valuable metaphor. It was the computer that first led
psychologists to think of human cognition in information processing
terms, a far more useful metaphor than the earlier picture of tbe central




nervous system as a "switchboard." The switchboard is a passive, the ,
IS a highly active, system. )

Second, the computer provides us with programing languages that can
be used to construct/formal descriptions of the human IPS's strategies
or programs. In fact, the strategy, in such a formalization, literally
becomes a computer program described in some computer language Program-

" ing languages have been developed (list-processing and string-processing

languages) that are well adapted to representing the memory contents and
processes of the human IPS. Thus, computer programing languages replace
conventional mathematical notation as tools for formalizing theories of”
cognltlon. In describing specific examples in this monograph, we will
not actually use these formal languages, but all of the programs to be
discussed have been written in one or another of them. -

. . . 1

Third, the.computer program that describes our theories of human
strategies can actually be run on computers that have been given the
same problems given to the human subjects The output or trace of the
computer program then simulates the sequence of problem-solving efforts
displayed by the human subject. Discrepancies between the predicted and
actual behavior can be observed, and can become the basis for new efforts
to improve the accuracy of the slmulatlon. s

It cannot be’ emphaslzed too strongly that in this application of the
computer it is not being used as a super-fast "number cruncher,” nor is
it competing in speed or accuracy with the human subject. The computer
is being used, as its very general capabilities enable it.:to be, as a
general purpose information processor., It is programed to imitate
as closely as possible the actual processes.used by humans, including
their foibles, and it avoids.entirely taking advantage of its powerful
arithmetic capabilities, which are patently unlike those of a human. If
the computer programed for simulation solves a prohlem either more skill-
fuiiy or less skillfully than do the human subjects, then the program is
a poor simulation--a poor theory of the human processes. The same may
be said if it makes more errors or fewer errors than the human subjects, -
or searches quite different parts of the problem space, or searches with
greater or less selectivity than the human subjects. A computer simula-
tion makes.extremely detailed predictions about the problem-solving
behavior. Hence, it is,highly desirable to be able to match these pre-
dictions against a dense stream of observations of the human behavior.
The standard experimental paradigms in which subjects respond only at

+ intervals of several seconds are not very powerful for testing these

.
\
.

kind of theories. For many problem-solving tasks®it is possible to
induce subjects to "think aloud" (not to introspect or retrospect) about
what they are doing while they are solv1ng the problem. Thinking-aloud ,
protocols, sometimes supplemented by eye-movement recordings, provide

us with data of the highest temporal density that we are usually able to .
obtain. Such data have peen invaluable in discovering and testing infor-

- mation processing thébElES of complex human cognitive behavior. Some

progress has now been-iefle—ir 8bjEcTITying and automating the difficult-. . :

task of analysing thinkihg-aloud protocol data.
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An important development of the past five years or so has been the
achievement of sufficient understanding of natural language to permit
computer programs to be written that can process and understand, in
several senses of that word, natural language text. DPrograms for process-
ing natural language are useful not only for analyzing problem-solving
protocols, but also for simulating human language processing, e.g., under- -
standing written problem instructions. We shall examine an example of
such an application }ater. Since language is a fundamental component
of human cognition, a theory that ignored it would be very incomplete.
-It is no longer necessary to abstract from natural language in simula-
tion programs.

As a simple example of how problem-solving tasks may be represented
in computer programs, consider the Tower of Hanol task, which appears
later as one of our examples. The tdsk involves three pegs, ‘and some
disks of various sizes that can be impaled on the pegs. Symbols would
be stored in memory to represent the three pegs: PEGA, PEGB, and PEGC,
say. Another set of symbols would represent the disks: DISKl, DISK2,
DISK3, DISKL4, and so on. A relation, Symbolized as ON, would be defined
to connect a peg with the disks impaled on it, e.g., PEGA -ON, DISK2,
DISKL4 (read: "On PEGA are DISK2 and DISK4"). Each disk would have '
assoc1a:;d—w1th it a symbol indicating its size: e.g., DISKA: SIZE, 2.
A process would be defined for moving disks from one peg to another:
MOVE(DISKx,PEGy,PEGz). The program for executing the move would remove
DISKx from the On-list of PEGy, and add it to the On-list for PEGz.
Thus, the symbol manipulating processes of the IPS would mirror exactly
the problem situation outside.

A strategy would be a program for determining a sequence of moves.
It might include component instructions like: Detect the largest disk

3that is not yet on the goal peg and store its name in short-term memory;

store 1n short-term memory the goal of moving DISKx sto PEGy; detect the
largest ‘disk that is blocking the move of DISKx and store its name in
short-term meémory. Instructions* llke these are readily written in
appropriate programing languages.

With these introductory explanations out of ‘;he way, we 1an now
proceed to the examples.

S L

Match-Stick Problems

My first example, which predates computer simulation techniques,
refers to the important work, in the Gestalt tradition, of George Katona
(1940). Here is one form of the task he used: } Slxteen matches are laid
dut in five squares, as shown in Figure 1. By moving exactly three
matches, reducé thé number of squares from five to four. All the matches
must be used, and all the squares must be of the same size.

4

Katona taught three different solutlons, or solution hints, to

three different'groups_pf subjects. To one group of subjects, he taught

{a "rote" solution: move Match 4 to V, 9 to W, and 2 to AA.

6




Figure 1

|
[

Katonats Matchstick Problem

t




To a second group, he taught a "logical" solution: since there are
16 matches, if there are to be four squares, each match must belong to
only one square. In the starting situation, four matches (6, 7, 8; 13)
perform a double function, for each belongs to two squares. To solve
the problem, you must get rid of .the double-function matches. L

To a third group, he taught an "intuitive" solution: the figure is.
veRry compact, with the squares all jammed together. To solve the problem,
you must open the- figure up.

Katona measured (1) the time it required subjects to learn the \
solution, (2) how well they retained it if they were asked to perform
“the same task agaln some weeks later, and (3) how well they were able to
transfer their skill to other problems of the same kind, but with dif-
ferent initial configurations of the matches, In general, he found that
the intuitive and logical solutions were learned more quickly than the
rote solution, but especially, that they were retaihed better and pro-
duced a greater amount of transfer. Further, the intuitive solution was

~a little better in these respects than the logical solution.

Katona himself did noet provide an information-processing explanation

of these findings. Clearly the solution I have called "intuitive" is
the one that accords most closely with Gestalt principles, but it would
be hard to give a formal demonstratlon of that fact, or a formal ekpli-
cation of just what it means. Let me hazard an explanatlon along
information-processing lines, '

First, the rote solution is the only explicit one, but it réquires
six facts to be learned (which three matches are to be moved, and the
three target locations for them). If any one of these facts is lost,
the solution annot be carried out by rote. The solution will not work
at all for different configurations of the matches. Thus, there is much
to be learned by this method; a little forgetting will cause failure;
.And there is no basis for transfer to variant tasks.

The logical solution is, of course, incomplete. It merely states
one necessary conditioh that must be satisfied by any selution. However,
it requires ‘only a single "idea" to be learned, and it is applicable to
all forms of the matchstick problem. But notice that the hint 1s stated
in termg of a characteristic of the problem solution, and not in terms
of actions needed to bring the solution about. Moreover, the hint calls
attention to the double-function matches, which are not the matches that
need to be moved in order to achieve the solution.

The intuitive solution is also incomplete, and vague as well. It
has a perceptual, rather than a cognitive, flavor. Again, only one idea
must be learned, and it is applicable to all form$ of <he problem. Thls
hint, unlike the hint for the logical solutlon, {s stated in terms of¥an
actlon——somethlng to do. It could easily be made more complete and

explicit by being rephrased: Open the figyre up by breaking upqtyo -
squares, then make one.new one. . Py
e . L . mat B S -
t ‘ ¢ 8 . - 3 (— . - .5
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) ) ., "In summary, the Katona matchstick experimert illustrates several
¢ 5 fundamental points. As a ?esult of different explanations, students can ’ {
. induced to learn qulte different thlngs about the same task. These

allow the task to be pe cformed successfully They are quite different, ;

however, with respect to the important criteria of efficiengy in-learn-

ing, retention over time, and trandfer to other tasks. Most of us would .

say that the students who learned the log;;al or intuitive solutione

"understood" the problem at some level, while those who only learned the |

rote solution did not. But tthe expeniment warns us also that "under- - 1

. standing" is not necessarily a unitary thing. It mdy have a cognitive |

- ) flavor or a perceptual flawvor; it may largely involye explaining why i
somethlng works, or it may invdlve explaining how to make it work. .

The.digtinction between What I have heen calling the logical and
¢ intuitive solutdions can be looked at in a slightly different way. The
former refers to a state space--a space of mgtchstick configurations.
The lattér refers to a space of operations—<of actions to change the
configuration. Since problem solving involves finding sequences of
operations that bring aboUt-a desired change in state, problem solutions
s imply relations between these two spaces: mappings of operation, sequences .
upon state-space differences. The difference between understanding
properties of the solution in the state space and understanding propertles
of the operator sequences,is analogous to the difference between’ proving
the existence of something by reductio ad absurdum and provingrit con-
. Structively by means of an algorithm. I would ¢onjecture that the dpplied
" mathematician most often requires the actual algorithm for his under-
‘/ standlngkt Understanding of the other kind doed not meet his needs (90 . -
know "what to de next"), and he may evén be 1nd1ffer3ﬁt to it.

. £
: The Tower of Hanoi puzzle will be familiar to many of you as a

wooden toy. There are three “vertical pegs, call them A, B, and C. On

: Peg A is impaled a pyramid ,of dlSkS (say 5 of them) of "raduated sizes.
The task'is to move the pyramid to Peg C, under the conditions that only
ohne disk may be moved at a time and that g larger disk pay never be placed

. on top of a smaller d¥sk. With n disks, the solutjon requires a minimum

P . af 281 moves (e. 8> 31 moves for 5 dlSkS) f

‘The Tower of Hanoi\

/A

Y

T Durlng the past year, we have been constructlng \n our laboratory a
j& taxonomy of solutions of the Tdwer of Hanoi problem preparatory to\d01ng
experiments “on learning, retention,\ and transfer (Simon, 1975). Each

¥ solution ¥s embodied in a computer program (written in the SNOBOL string- ' .
processing language) that is capable of using the method it embodies to
solve the problem. Thus each program constitutes a theory of the knowl-
edge and skills possessed by any human being who can apply that method
to the problem. By comparing the programs, we ‘can see what differences
they imply in the demands made upon memory or proces31ng capabilities. . ,
By .small "parameter" changes in the programs, we/can construct 1nnumerable ’




¢! . . ’
variants of the basic methods, as well as hybrids that combine elements
of several of them. <

We have found four types of solutions of the Tower of Hanoi problem,
each with quite distinct characteristics in the demands they make upon
long-term memory, short-term memory, and perception. The computer pro-
grams express in a mathematical language our theories of the processes

- being used to perform the tasks. Formalizing the process theories in

this way guarantées their completeness in a certain sense: computer
programs lacking essential components don't run properly.: The formal
expression of each program also allows us to make exact estimates of the
memqry and perceptual requirements of the method that the program de-
scribes. Finally, the programs can be used with actual Tower of Hanoi
préblems to simulate-human performance in the task, so that the simula-
tions can be campared with human data.
' { .

The first of the four methods we have programed is a rote method.
The Tower of Hanoi problem for five disks can be solved by making, in
proper sequence, the 31 moves that have been learned by rote. As in the
case of the rote solution of the matchstick problems, this solution is
burdenscme to learn, is ¢asily forgotten, and offers no help tq solving
the problem with an arbitrary number of disks, or the problem with a
change in starting situation (e.g., two smallest disks on Peg C, largest
on Peg B, and remainder on Peg A).

¢ The second method, which .,we call] "goal recursion," has the greatest
mathematical elegance. To move a pyramid of n disks from Peg X to
Peg Y, first move the pyramid of n-1 smallest disks from Peg X to Peg Z;
next move the largest disk from X to Y; and finally, move the pyramid of
n- -1 smallest from Z to Y. Of course moving a pyramid is not a legal ’
move, but it constitutes a Tower of Hanoi problem with one less disk than
the orlglnal problem. Hence, if we know how to solve the one-disk prob-
lem, then, by mathematical induction, we can solve the n-disk problem
for arbitrary n.

v

Acquiring the goal recursion method involves less learning than the
rote method, provided that the learner understands the concept of recur-
sion or of mathematical induction. Again, we would expect good retention,
and the solufion transfers to problems with any numbers of disks, but not

“to arbitrary starting configurations”unless the algorithm is amplified. .

The method illustrates how understanding may be relatively easy if cer-
tain other understandings (in this case induction) have been acquired
previously, but may be relatively difficult otherwise.

The goal recursion method illustrates another importapt point also.
To execute it requires holding each goal in short-term/;emory while
executing the goal at the next lower recursive level, and holding the
latter goal, in turn, while the next loWer is executed. The stack of
pending goals in memory reaches a maximum of n-1 in an rni-disk problem.
Hence, we would expect a human subject to encounter real difficulty in
executing the method, even if he understands it, when the recursion

-—
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depth exceeds shQrt term memory limits (four of five disks). There is a
* vagiant of the method however, that requires regenerating the goals
instead of rememberlng them. It should be slower of execution than the
"pure" method; and requires perceptlon of thg.gurrent situation to choose

the next goal.

This brings us to the thirxd method, which may be called "perceptual."
The, godl recursione methed could be applled without sight of the actual
Tower of.Hanoi apparatus, for all the information used in applying it is
stored in memory. In the perceptual method, each move is-chosep by look-
ing at the characteristics of the current problem 31tuat10n which re-
quires looking at the actual apparatus (or retaining a v1sual image of
it). 'In its most sophisticabed form, it works like this: Find the
largest disk not yet on the target peg; if it can be moved to that veg,
move it; if not, find the largest disk (either above it or on its target
peg) that 1s blocklng its move, and s€t up the goal of moving that disk;
repeat the process until a Hisk is found that can be moved, and move it.
This process i5 also recursive, using the recursion to find the largest
removable barrier to,a desired move. -
The perceptuéi method is relatively easy to learn (rroviding the
perceptual recursion is understood), requiring mainly the acquisition of
the perceptual predicate ."largest blocking disk." It can be transferred
to problems of all sizesi gnd it works for any starthg situation,
whether on the optimal solution path or not. What this solution‘ teaches
us is that understanding a problem may invoYve learning to see the right
. perceptual chunks in the stimulus display--in this case learning to per- -
ceive the largest blocking disk for any given disk.

Finally, the Tower of Hanol problem can be solveé by executing a
sequential pattern of moves. Number the disks from shmallest to largest.
Then, they should be moved in the following sequence (for the four-disk
problem): 1-2-1-3-1-2-1-4-1-2-1-3-1-2-1. It is easy to see how this
pattern can be-extended to five or more disks. Since the smallest disk
can always move to elther of two pegs, an additional simple rule is
needed to specify the direction of movement of that disk.

[ 2

The pattern solution can be simplified even further, bBecause we
know that the smallest disk is only moved on the odd-numbered moves and
there always exists only a single move on the even-numbered moves. The
sequential pattern solution is easier to learn thard the rote solution;,’
it is more-or-less transferable to problems of any number of disks; it
is usable only along the optimal -solution path, and it makes few demands
on either perception of memory (other than keeping track of the parity of

_the move).

-

Clearly, a person yho learns a particular one of these four solu-
tions understands qulte different things about the Tower of Hanoi problem
than does a person who learns a different solution. We would probably
say that a person who learns only the rote solution doesn't understand
the problem at 211. -But what about the sequentisl pattern solution?

~




4

|

1

It is concise, even élegant, and certainlsexhythmic. The person who

.knows it does not thereby understand why it works. Is this a kihd of

understanding that it is useful for our students to acquire? 1Is it
important for them to look for pattern in natufe as well as mechanism in

nature? ~ .

-

I can po¥t to at least three very important discoveries in the
natural sciences that involved detection of pattern without knowledge of

< mechanism: KXepler's discoveries of the elliptical orbits of the plants,

of-the Law of Areas, and of the relation of period to radius of orbit;
Mendeleev's discovery of*the Pegiodic Table of the elements; and Balmef?s
discovery of the formula for the Balmer lines of the hydrogen spectrum
(Simon, 1968; Banet, 1966, 1970). - These discoveries provided parsimonious
descriptions, not explanations, of their respective phenomena. "It can be
shown that some common basic pattern-detecting processes were implicated
in all of them. Whether or not we wish to call such pattern detection a
form of understandlng,” we may well want to help our students to acquire
this skill if it is teachable. -

The goal-recisive and perceptual solutions for the Tower of Hanoi
problem come closer than does the sequential solut¥on to our common
notions of "understanding," yet they are quite dlffereni from each other.
If Yy undeérstanding we mean being able to prove “that something works,
then the goal-recursive solution is superior, for it is the ‘easiest one
on which to construct such a prbof for the puzzle. A proof can be con-
structed for the perceptual solution, but it is a little more complicated.
The perceptual solution, on the other hand, goes to the heart of the
question: What feature in this situation tells me what to do next?
Thus, the solution works for any situation, whether on an optimal solu-
tion path or not, while the goal recur31ve solution only works along
such a path.

|

Let me leave the Tower of Han01 with this demonstration of a

plurallty of understandings, and move on to another example.

t

Geometry Proofs f

third example is based ubon the work of Scandura in teaching
students to discover proofs for theorems in geometry, and upon the
artificial intelligence research of Gelernter and Rochester, who built a
computer® program capable of finding sucl proofs.

Scandura has been especially concerned with geometry problems that
involve constructions (Scandura, \Durnin and Wulfeck, 1974). Discovering
constructions is perhaps the most|difficult skill that geometry students
have to acquire. Scandura and his colleagues have developed procedures
for teaching students schemata (called in their papers, "higher-order
rules") that are helpful in search;ng for approprlate constructions to#
solve geometry problems. , \




An example of the approach is provided by the two-locus problem:
~Given a line and a point not on the line, and a radius R, construct asx
, circle of radius’'R which is tangent to the given line and which passes
through’ the given point. This problem can be solved by drawing a circle
,of radlus R about the given p01n¢, finding the 1iné at distance R from }
“the given line, and parallel to 1t finding an intersection of these
|
|

two loci; and constructing %,dircle of radius R with that intersection

as center, By the first construgtion, the new circle will pass through

the .given point, and by the second construction, it will be tangent to
. the given line. ?

Scandura et al. observe that the solution fits the general schenma: ®
To find a locus, satisfying two conditions, find the locus ‘satisfying the
first, then the locus satisfying the second, then the intersection of
these two loci. This schema is, of coursey a special ease of the more .
general schema of means-ends analysis used in problem-solving programs
like the General Problem Solver (GFS') (Ernst &-Newell, 1969). Means-
ends analysis works roughly as follows:

Given a starting situation and a goal situation, detect the differ-
ences between them. For each such difference, find an operator in memory
that has the function of removing differences of that kind and apply. the
operator. Continue until all differences have been removed. To apply
the means-ends schema, or the two-locus schema, there must, of course,
be available in memory the operators to be applied to carry out the indi-
vidual steps. In the geometry case, sthis means, a set of basic one-locus
constructions, accessible from knowledge of the-canditions they satisfy.

2 " ,‘ It is eaSy to show that the effectlveness of a program for discover-
proofs for theorems in geometry or solv1ng other kinds of problems

'By search processes depends heavily upon the selectiveness of its search.
The mumber of alternative paths through the forest is usually far too .
large to*permit crude ‘trial-and-error search. Hence, efficient search
rests on the availability of processes, like the schemata described above,
tha#® choose promising search paths and-avoid others that are not likely
to lead in the direction of the goal.

C It follows that "understanding” a subject like geometry requires
not only acquiring an adequate store of theorems, to be used as the
basic operators in carrying out proofs, but also acquiring sufficiently
power fwk-schemata to guide the search for solutions. Whereas geometry

books are always fully explicit about the theorems, they generally make \
only sparlng reference to schemata and their use. i )
4 ‘5‘\ ¥

A similar lesson Ys taught by the Gelernter- Rochester’ geometry
program*(Gelernter, 1963). That computer program (which was not designed
-as a simulation of human problem-solving processes) makes use of a number .
of ‘'heuristic devices to guide its search for proofs. ‘Among these, it
uses a diagram of the problem situation. Suppose that, working back-
wards, it determines that the theorem, T, could be proved if the ante-
‘cedents, Tl, T2, etc., could be proved. Before it undertakes to prove

Py
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these antecedents, it checks the diagram to seé/if they are empirically
true--that is, true.within the margin of error of the diagram. If they
are not, it abapdons that pgrticular line of search. The usefylness of
this Drocedure depends, of course, on the fact that it takes far less

processing time to detect, for example, that a triangle in a diagram is

not right-angled than it does to exhaust the possibilitie$ for proving
that it is. 8

Thus, geometry, like the tasks examined previously, teaches us that
understanding is a pluralistic concept. In particular, it-teach®¥ us
that we do not uhderstand a mathematical subject when we simply under- . ‘
stand the axioms, theorems, and rules of inference. Understanding re-
quires, in addition, the acquisition of a whole host of héuristic - problem
solving capabllltles, some of which are peculiar to the given subject, o, »
but others of.which have a wider range of application.

2. .
Algebra Word Problems ’

Among the least-formalized aspects of mathematical. learning are the

skills of expressing in mathematical language physical or ofher empirical °
situations described in natural language. At the core of formal arith-
metic and algebra are symbolic expressions and their manipulatidn. Word

. problems,” or story problems,-extend beyond these formal boundaries 1n
two directions: in their use of natural language, and in thglr reference
to the semantic denotations of the language and corresponding equations,
I&féhould ‘not be surprising, then, if ability to handle word problems.

.were relatively independent of skill in symbollc manipulation. I have © T
no systematic data on this point, but my friends who. teach mathematics
seem to see little relation between the two skills. "Nor, and this is a
little more surprising, does a high letel of verbal skill appear to be .
sufficient for proficiency in handling word problems: On the contrary )
(and again anecdotally) persons with good verbal skills- but withdéut other
mathematical aptitudes appear to be relatively more disadvantaged in N \
doing word problems than in manipulating unlnterpreted mathematlcal
expressions., S

E .

| ) We are beginning to understand from an information- -processing

F standpoint what is involved in understanding and performing word- -problem
: tasks. Let me begin with an account of a computer program that was not

- "~ intended to simulate in detail how people solve word problems, but was

| .constructed as a study in artificial intelligence--in how to program

E computers to do clever things (Bobrow, 1968). Since the program has been

E described several times in the literature, there is no need to repeat

i that description here. The important thing about the Jprogram for our

f purposes is that it is primarily syntactic rather than semantic in its

; methods. Given the text of an algebra word problem; it undertakes to

[ translate that text into a set of algebraic_equations, and then to solve

: the equations. The task is approached as a problem in automatic trans-

E " lation. The program (called STUDENT) has some syntactical capabllltles

E that enable it to parse simple English sentences of. the sort found in ‘.
]
|
i
i
l
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word problems. In general, the system does not need to know the meanings
of the words.in the sentences, except those words that perform grammatical
functions or have specific mathematical meanings (e.g., "times," "L5,"
"half"). Hence, for this program, understanding a problem means being
able to extract enough of the structure of the input sentences tc trans-
late them Into equations having the’same structure. .
To make this more concrete, consider the following example: "If
the number of customers Tom gets is twice the square of two-tenths times
the number of advertisements he runs, and the number of advertisements
he runs is 45, what is the number of customers Tom gets?" Here, "the
number of customers Tom gets" and "the number of advertisements he runs"
need only be recognized as noun phrases, to be treated.as "unknowns" and
provided with algebraic names like-x and y in the translation. On the
other hand, "is" must receive its appropriate semantic translgtion as
"=," and "twice," "square," "two-tenths," and "times" must also be inter-
preted semantically. Nothing, obviously, need be known about the world
of customers and advertisements.

Some time .after STUDENT had appeared, and had demonstrated its
abilitywto solve high-school level problems, it occurred to us to ask
whether the processes it used bore any resemblance to the proeesses used

“by students in algebra courses (Paigé and Simon, 1966). .We cogg;ructed

some problems’ and tested them with human subjects, asklng the subjects

to think aloud as they worked the problems. We then analysed their tape-
recorded protocols to identify {he sequence of processes they had used,
and the way in which they represented the problems” at various stages
during the translation. Again, let me give you one of the problems we
used: "A man has 7 times as many quarters as he has dimes. The value
of the dimes exceeds the value o4& the guarters by $2. 50. How many has

he of each coin?"

A number of our subjects proceeded just as STUDENT would, parsing
the input sentences and mapping them over to an algebraic equatibn like:
10D = 25(7D) + $2.50. You can verify that this is an accurate transla-
tion into algebra of the English sentences. Other subjects, however,
wrote down a similar equation, but with the !plus" replaced by "minus.

A third, ' and smaller, group of subjects read the problem statement and
said to Ehe experimenter: '"Isn't there a contradiction here?"

i

Of course there is no contradictign in the problem statement. There
is a contradiction only if we add to the statement some semantic knowledge
that an American student might be expected to have stored in his long-
term memory: a quarter is worth more than a dime, and the numbers of
both quarters and dimes must be non-negative integers. The difference
in the processes of the three groups of students now becomes rather
clear. The .students in the first group proceeded purely syntacticallv
(except for recovering from semantic memory the fact that a dime equals
“ten cents and a quarter, twenty-five cents). The students in the second
group used their sefantic knowledge to infer that the total value of the .
quarters must be greater than the total value of the dimes, and that

-
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‘theréfore the,$2.50 must be added to the latter or subtracted from the
" former. Evidently, they never checked this inference against the syn-

tactical detail of the sentence (after «all, something was to be added to
something), But used the semantic knowledge -to construct the "correct"
equation. The students of the third group processed the input sentences

“both syntactlcally and semantically, thereby discovering the "contradic-

»

tion. ° P .

This simple exzample illustrates some of the alternative ways in
which the same problem may be processed. 0f course the alternatives
become more numerous as the semantic context of the problem becomes
richer. For many problems of applied mathematicsi’"physical intuition"
(which we can now translate as "semantic information") may go a long way
toward reducing the need for careful, detailed syntactic processing. 'If
we are training a student in applied mathematics, we may take the posi-
tion that he does not understand what he is doing unless he is abie to

evoke from memory, when he is confronted with a probtkem, the rich set of °

semantic information relevant to the problem which he has stored (or
should have stored). On the other hand, there comes a point in training
a pure mathematician where we may| have to discourage him actively from

_employing semantic cues instead of holding carefully to purely syntactlc

X

processes. Unless we succeed in teaching him the distinction, ht hwill
never know what mathematical rigor is. There is no reason, of course,
why a student should not learn that there are at least these two differ-
ent kinds of understanding\of mathematlcal problems, each appropriate to
certain times and circumsta

Understanding Problem Instructions A f

~
In handling glgebra word problems, the student is essentially given

" the prgblem representation: the output of his translation is to be:a

set of {algebraic equations. In other kinds of problem situations, choice
of problem representation becomes a key part of the solution process.
Let me £ite an extreme example, which may be familiar to some of you:
the "mutilated checkerboard" problem.
LY

Given an ordinary 8 x 8 checkerboard, with each square one inch on

a sxde§ and 32 dominoes, each 1 x 2 1nches in size, the board can be
ct;y$covered by the dominoes’, with no dominoes left over. Suppose

éhipxtﬂb upper-left-hand square and lower-right-hand square of the board
are now cut off. Can the mutilated board be covered exactly with
31 dominoes?

We can try to solve the problem by testing all coverings of the
board. Since there are only a finite number of possibilities, we will

- sogner or later find 2 solution or prove there is none. Of course, when

we ‘calculate the number of alternat&qes, we realize that we will find

the answer later, not sooner. Is there a better way?.
I

16




-

If we recall that the squares of a checkboard are alternately black
and red, then the better way becomes evident. We do not need, in our
representation, to keep,track of which’ squares we "have covered, but only
of the number of black squares and the number of red squares covered. : «
It is easy to verify that both squares cut from the board had the same
color (red, say); hence the mutilated board has only 30 red, but 32 black ‘
squares. But each domino covers exactly oné black and one red square,
hence there is no way they can be arranged to cover more of one color ‘
than of the other. - ’

Consider now another puzzle-like probdm that is cénsiderably less.
subtle than the checkerboard problem: '"THree five-handed extra-terrestrial
monsters were holding three crystal glepes. Because of the quantum-
mechanical peculjarities of .their nejghborhood, both monsters and globes
come in exactly three sizés with no others permitted: small, medium,
and large. The medium-sized monster was holding the small globe, the .
smell monster was holding the largeé globe; and the largest monster was
holdlng the medium-sized globe. Since this situation offended their
keenly developed sense of symmetry, they proceeded to teleport globes
from one to another so that each menster would have a globe proportionate
to his own size. Monster etiquette complicated the solution of the prob-
lem since it requires: (1) that only one globe can be transmitted at a
" time; (2) that if a monster is holding two globes, he may transmit only
the larger of the two; and (3) that a globe must not be transmitted to

monster who is holding a larger globe. By what sequence of teleporta-
ions could the monsters have solved this problem? /

Before he can begin working on this problem, a person must find
some way of organizing the facts about the situation and the permissible )
operations on it. This resembles the translation stage of the algebra }i
word problems, but it is substantially more diffiéult. One reason it is
difficult is that there are alternative representations to be considered.
For example, he can associate with each monster the set of globes. it is
holding at a given moment; or he can associate with each globe the mon-
ster who is holding it.- ngch representation is sele&ted.ha&aconsequences “ .
for the ease with which moves can be made and their legalltx,tested
With the former representation, for example, moves are made by deleting
the name of a.globe from one monster's list, and adding it to the list.
of another. With the latter representation, moves are made by changing
the name of the monster holding a particular globe

|
-

The difference between these two representations is not trivial. ' //
Subjects who adopt the former representation are able to solve the prob-

lem in about one- -half the time that is required by subjects who adopt

the latter representatlon By a combination of laboratory experiments,
analyses of thinking-aloud protoco S ang computer simulation of the
understanding process, we are begifining to get clues as to why this is

so, and clues also as ‘to why subjec¢ts adopt one representatlon or the

other. .




The computer program, UNDERSTAND, whleh we have built as our
research vehicle for this task, has a gross structure not unlike the
STUDENT program. Its first task is to parse the input sentences, making
use mainly of syntactic knowledge to get at their surface structure.
Next, it makes some judgments about what is relevant in the problem
statement, primarily by identifying the sets,» lists, and relations that
are discussed. Then it is ready to synthesize a,representation for the
problem--a way of storing the problem information in list structures
(essentially, directed colored graphs) in memory. At the same time, it

"interprets the problem statements that describe legal moves, and adapts

the move processes appropriately to the representation that has been
chosen. It is now ready to begin its attempts to solve tlie problem:.
(The reader who is 1gterested in the content of the program will flnq a
. fuller description in Hayes and Simon, 1975.)

‘The UNDERSTAND program does not in a literal sense '"choose' its
representation. That is to say, it does not explicitly consider a number
of different representations and select one of them. Instead, it is
led to synthesize a particular representation by the form of the problem
statement, and a different problem statement may cause it to synthesize

a differeqt representation. For example, in the form in which the prob-

lem is stated above, the system would in fact assign ‘lists of globes to
monsters. If the problem statement sald something like: "Globes are
owned by monsters, and the owners are ‘changed until each globe has an
owner whose size corresponds to its own size,) then it is likely ‘that
UNDERSTAND would select the representation that associates with each
globe the monster holding it. Thus representation is highly sensitive
to problem statement, and the system has no capability for seeking-a

“hest” representation that will facilitate solution of the problem. It

is as helpless in this respect as the typical person confronted with the
mutilated checkerboard problem.

Our reason for constructing the UNDERSTAND program in this relatively
"unintelligent" fashion is that it appears to reflect just what people
do when confronted with instructions like those for the monster problems.
That is, the deliberate search for.a good problem representation, or
even a capability for generating and considering alternative representa-
tions does not seem to be a common part of thée human problem-solving
repertory. Our subjects appear to be as readily trapped as is UNDERSTAND
into inefficient problem representations whenever these are the represen-
tations that follow most directly and transparently from the wording of
the problem text. If we think, therefore, that our students should
possess skills of generating and modifying problem representations, we
will probably have to give explicit attention to those skills in their
training.

N >

There is very little more’ I can say at this time about how this
desirable result is to be attained. We are still in the early stages of
our research on these phenomena, and far from the point where we are
ready to prescribe learning processes that will enhance the capabilities
of problem solvers on this dimension. Practice does not always have to

~
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wait for.science, -however. I expect that if we gave more explicit
attention to the processes whereby representations are generated in our
teaching of applied mathematics, we could likely help our students
acquire better skills of choosing representations.

Chemical Thermodynamics

g
$

e environment of monster problems is still rather impoverished
froml'~semantic standpoint.‘ Knowledge of guantum mechanics will not
help & person formulate or solve these problems. “In fact, several of
the sﬁbjects we have tested bogged themselves down hopelessly, precisely
by faiﬂing to abstract out these irrelevancies at the very outset. The
problem domains we have discussed in previous sections are also not very
rich gmantically: algebra word problems, thé Tower of Hanoi, and
matchiiick problems. .Geometry, of course, has a considerable eontent,
but if is not semantic, strictly speaking, unless we make use of diagrams

or other instantiated‘mdﬁels. ’

. For my last example, I should like to use an area of science that
is’ probably not atypical for applied mathematics in its intermingling of
syntactic and semantic elements. This is the area of chemical thermo-
dynamics at the level of an upper-division undergraduate coursé. The
choice of chemical thermodynamics rather than electrical circuit theory
or engineering mechanics is a matter of chance. ~ For various reasons
that are irrelevant to the present discussion, we happen to have chosen
thermodynamics as the setting for studying the scope and. organization of
students' semantic Kmowledge in a scientific subject.

What I can now say on this topic is even more provisional than what
I have said about the UNDERSTAND process. What I should like to share
with you is not so much our ani? sions as our current plans for explo-
ration, ) '

’

.

The vehicle we have chosen for an initial exploration is a computef
program that generates problems in ‘chemical thermodynamics, and that is
capable also of solving the problems and of gffering successive hints to
students who are having difficulty solving them. The problems are of the
sort that you will find in standard textbooks on the subject. To take a
simple example: a pump takes in water at such and such a temperature
and pressure, and outputs it at some other specified temperature and
pressure; what is the horsepower of the pump if the water flow is
100 gallons per minute? { .

. ) 1 ,

The program that generatls these problems is somewhat different
from the programs generally used today in computer-aided instruction.

The usual problem-generation m?thod is to have a considerable number of
templates of different problem types, to choose one of the templates, and
then to fill it in with appropriate numbers. Our program contdins, in-
stead, what amounts to a theory and-:a body of factual information about
chemical thermodynamics. It uses its theoretical and factual knowledge

19
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to generate problems which it can then solve with the same resources.
Since, when solving the problem, it must make decisions about the order
in which to solve for the unknowns, it can record these decisions and
use them to offer advice to students about the solution process.

Let me describe the program (yhich I am constructing in collabora-
tion with R. Bhaskar) a little more concretely. The program has access
to equations that express the laws of conservation of mass and of energy,
and othiers that represent the equations of state for the working sub-
stances that are used in thermodynamic devices. (The gas laws for ideal
gasses are a special case of these.) It has a list of devicesg (e.g.,
pumps, compressors, pipes, etc.), with each of which is assoc1ated infor-
magion about-the working substances it can employ, and the usual ‘condi-
tions of its operation. It has a list of working substances, with each
of which is associated the equation of state and information about

reasonable upper and lower bounds for 1ts temperature, pressure and other.

properties,

~

The program is able to examine the incidence matrix of the equations
it is using in order to choose subsets of variables to be the independent

,and dependent variables, selecting these so that they will bte consistent.

It can then assign values to the independent variables and ask questions
about the dependent ones. Using the same incidence matrix, it can also
select éfficient solution paths that minimize the need to solve simul-
taneous jequations, .o .

This brief description will provide a feel for the character of the
system? It was designed initially, as I have said, to generate problems
for -students., However, as it has developed, we are more and more per-
suaded that it also provides a starting point for describing the organi-
zation of knowledge in the memory of a student who has completed a
t ermodynamics course. Accordingly, we are now beginning experimental

k to see if we can obtain direct evidence about how such semantic

knowledge is stored, by observing students as they solve thermodynamics
problems. We proceed on the assumption that one of the main components
of "understanding” in this kind of task is to be able to evoke elements
from a considerable body of semantic information, as and when that in-
formation becomes relevant to the problem under attack. We wish now to

see whether the organization of knowledge that enables a person to handle

such problems effectively bears any resemblance to the organization we
have imposed upon our program in order to enable it both to generate and
to solve the same problems. |

b

Conclusion ‘ C ‘

i ~
In this entire account of "learning to understand," ranging over a
nalt dozen rather dissimilar problem domains, no‘attempt has been made
to define either of the Key terms "learn" or "understand." Theyomission
is deliberate. Neither "learning" nor "understanding" denotes a single,
simple set of human cognitive processes. Whenever a change takes place
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in the cognitive system that enables it to perform a task,better than it
could previously, we say that learning has taken place. It is extremely
doubtful that all learning involves one kifid of change, or change in one
particular component of the system. Learning, thge, is simply a port- -
manteau term®that denotes any.semi-pe;manegt improvement in performance.

. .

. In a gimilar way, we say 'that a system exhibits'"understamrding” of
a domain when it dgmonstrates that it possesses relevant knowledge of
that domain and is-able to marshal that knowledge in the perfbrmance of
various tasks. Understanding can he of various kinds and degrees, may
support the®performance of a variety of different kinds of tasks, and
may reside as much in the organization of knowle%ge, and in the processes
capable of operating upon it, as in its content. :
All of this sounds very indefinite. The way to make it definite, N
) and ultimately applicable to.problems of instruction, is to-explore in
detail how knowledge and skill are stored in the *human mind and brain in
specific task domains of various sorts.” And the machinery for c#i¥rying
out those explorations includes both the standard armamentarium of
psychological experjmentation and the powerful new tools of computer
simulation of cognitive processes. N

<
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In this paper I have tried to illustrate how this exploréﬁion can
be carried out, citing six examples, more or less relevant to the enter-
prise 8F applied mathematics, of the present state of the art. We have
already reached a point where the research begins to give us™new concep-
tions of the nature of knowledge, skill, and understanding in-applied
mathematics; and where we can begin to draw some common-sense lessons
from it that are applicable to our pedagogy. .

Let me conclude by listing some of the suggestions for practice
that are implicit in the examples of research surveyed in this paper.

1. The kinds and degree of understanding that the student achieves
in a task domain can:have important consequences for his refe®ntion of
skill and knowledge, his ability to transfer that skill and knowledge to
similar tasks, and the speed)and efficiency with which he can acquire
additional knowledge. -

/2. Understanding has many facets. It may reéquire the acquisition .
of new cognitive concepts (e.g., ‘recursion in the Tower of Hanoi prob-
lem), and ability to recognize new percepts (e.g., the "largest blocking
disk" in the same problem). It may be expressed in terms of properties
of problem situations, or properties of operator sequences, that is, in
terms of state or process.

) -
3. An important component of problem-solving skill lies in being
able to recognize salient problem features rapidly, and td associate -
with those features promising solution steps. Much current instruction
probably gives inadequate attention to explicit training of these per-
A ceptual skills, and the kind of understanding that is associated with
them.
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L, Limits oflshort-term memory may prevent application of a
problem-solving method that is understood. Sometimes alternative methods
exist that permit a tradeoff of conceptual recognition for short-term
memory of goals., ‘ v

] 5.4 Understanding generally requires not only storage of adequate
semantfc information, but also availability of pro@lem-solving schemata,
both those specific to the subject matter (e.g., .the two-locus heuristic
for geometry), and those that are more general in application (e.g.,
means-ends analysis). These schemata deserve an ‘explicit and prominent
role in instruction.

6. It is often possible to substitute syntgctic for semantic
processing, and vice versa, Awareness of these alternativés, and skill
in employing both of them can enhancé accuracy of understanding by
exploiting redundancies in the problem information (e.g., the redundan-
cies in the "contradictory" algebra problems).

» 7. Understanding processes include the processes of constructing
representations of problem situations. Most problems are capable of
being represented in a variety of ways, and problem difficulty may be
greatly affected by the representation chosen. The skills of searching
for effective problem representations are probably learnable and teach-
able skills, but they are not now generally taught in a systematic way.

8. Finally, it is becoming increasingly possible to determine in
detail whét is involved in understanding any specific subject matter
area to the point of writing computer programs that specify what a per-
son who understands knows, what processes he has available for solving
problems and acquiring new knowledge in that domain, and how his knowl-
edge is organized in memory. i

’
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